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Future Psychohistory 
Computation and Humanity 

 

Introduction 

In his mid-20th century science fiction trilogy Foundation1, Isaac Asimov used the fanciful science of 

‘psychohistory’ as a literary trellis to weave a story around. The concept was simple yet intriguing: 

humanity’s course could be analyzed, predicted, and even guided using this new science that combined 

elements of mathematics, psychology, and history. New science was a familiar theme of the time. This 

was the dawn of the atomic age, the blossoming of the computer age, a time of recent and breath-

taking expansion of the cosmological model, and the eve of the genetics revolution. Our world view had 

been radically re-shaped by Darwin, Einstein, Hubble, Turing, and many others. 

Computer hardware has evolved considerably since that time, especially in miniaturization2 and parallel 

processing. Hardware advances have led to innovation in software and networking, and multiple 

information technology feedback loops have manifested themselves (e.g. computer-guided design). 

There is not as yet (and may never be) a set of formulae that can chart humanity's course as in 

Foundation. However, it may soon be possible to accurately model a form of psychohistory 

computationally. At least four paradigm shifts are currently underway, making this possible. 

They include: 

1) almost-free transistors 
2) the supplanting of the formula by the algorithm 
3) abstracted computing (the 'Cloud')  
4) the growing realization that brain=mind 
 

This article is neither an advocacy for any course of action nor a general espousal of Asimov’s ideals. 

Rather, it is only a brief look at the possibility of computational psychohistory. 

I must, however, confess a deep admiration for Asimov’s life and a love since boyhood of his books. 

                                                           
1
 Consisting of Foundation (1951),  Foundation and Empire (1952), and Second Foundation (1953) 

2
 Unrelated, but miniaturization was the subject of Asimov’s novelization of the 1966 film, Fantastic Voyage 
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The Foundation Vision 

August 1941. Hitler's armies were on the march all 

across Europe. A malevolent, dictatorial, and 

technologically advanced empire, unlike anything 

the world had seen since Rome, had quickly 

emerged. Meanwhile, an ocean away, a quiet 

America was still months away from Pearl Harbor. 

In a small office in New York, a young chemistry 

grad student, who moonlighted as a science 

fiction writer, met with his publisher.  The main 

topic of discussion was a possible new project, 

one that would span at least several stories and 

maybe even several books. The eventual result of 

that discussion, first published piecemeal, and 

always guided by Asimov’s own philosophy, was 

Foundation. 

Here is a very brief synopsis [spoiler alert]. 

In the far future, the great Galactic Empire has 

united virtually every corner of the galaxy into a 

single political and economic union. At the centre 

of this empire sits its pinnacle, the planet-city of 

Trantor. It is, for the most part, a benevolent and 

peaceful system, where order and tradition have 

dominion. However, it is in the early stages of 

decline, and is replete with the trappings: a 

corrupt, stultifying bureaucracy, pompous 

aristocracy, and even a few vicious rulers. 

A small group of academics on Trantor, the 

'psychohistorians', are the only ones who know of 

this impending collapse and they keep it very 

secret to avoid sedition charges. They are led by 

the brilliant mathematician and inventor of 

psychohistory, Hari Seldon. His goal is to let 

psychohistory guide humanity through a much 

shorter, less painful collapse and recovery of only 

a thousand years, instead of the thirty thousand 

years of ignorance, brutality, and misery that 

psychohistory predicts if things are left to play out 

on their own. This is to be accomplished through 

the establishment of a 'Foundation' to develop 

science and rationality to the point where it can 

eventually replace the dead empire and save the 

galaxy. The book Lost Horizon (Hilton, 1933) tells a 

similar story with the Tibetan lamasery of Shangri-

La playing the part of the Foundation. 

The tale then recounts the rise of the noble 

Foundation, from its humble beginnings on the 

periphery of the galaxy, to its eventual domination 

of a good sized section of it. This period is marked 

by a series of 'Seldon Crises', which correspond to 

critical junctures in the psychohistory 'Plan'. A 

small screening room, featuring a projection of 

the long-dead Seldon, re-activates at such crises, 

usually to state the obvious or be otherwise 

innocuous. It is an important precept of 

psychohistory (and thus the Plan) that the general 

population is not informed by, consciously guided 

by, or even aware of the Plan. 

One of the strongest themes in Foundation is that 

of economics trumping militarism. Over and over 

in the tale, a brief flash of silly, goose-stepping 

empire building is washed away by the relentless 

forces of trade, work, and brave industry. 

One example is the interstellar trader Hober 

Mallow. He leads a trade effort to one of the 

hostile worlds that surround the Foundation.  

Through deft trading and negotiating, he manages 

to make this potential enemy reliant upon 

Foundation technological goods (and ongoing 

maintenance of those trinkets). He is basically a 

swashbuckling merchant. His exploits get the 

Foundation past a Seldon Crisis, move it beyond 

being a mere purveyor of a pseudo-religion, and 

make him the first of the ‘Merchant Princes’. 

Another example is what happens on the once 

magnificent Trantor after the Galactic Empire falls. 
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After it is sacked, it meets with a rather inglorious 

fate: 

The survivors tore up the metal plating and sold it to other 

planets for seed and cattle. The soil was uncovered once more 

and the planet returned to its beginnings. In the spreading areas 

of primitive agriculture, it forgot its intricate and colossal past 

 

(Asimov, Second Foundation, ch. 18 para. 4) 

 

 

No trumpets or flags, no marching armies or 

imperial grandeur - just mooing cows. This is a 

parable often told by those who either barely 

escaped (like a young Asimov and his family) or 

endured great suffering under Stalin or Hitler. It is 

the utopian 'little chicken farm' referred to in the 

opening of Frank Capra's 1937 film version of 

Hilton’s Lost Horizon. 

Science and rationality are two more of the 

touchstones of the Foundation. They are forced by 

circumstance to use baser methods at times to 

deal with stubborn ignorance. However, the 

leaders of the Foundation always keep their eyes 

fixed on the great future when civilization, 

knowledge, and peace will reign supreme (or they 

suffer greatly for their navel-gazing). 

Asimov was intellectual and reflective, but not at 

all preachy. His books are usually humorous; 

sometimes even the non-fiction ones, with 

protagonists who are charmingly less than perfect.  

This is a story of humanity as a great, unstoppable 

juggernaut, but it is definitely not an analytical, 

objective tome like ‘Das Kapital’. Rather, it is 

chock-full of colourful heroes and villains, 

together with a lot of suspense and tricky turns. 

It is pulp fiction with a message. 

 

 

Eventually, an unforeseen mutant mental giant 

called ‘The Mule’ revives and appropriates the old 

empire, derails the Plan and conquers the 

Foundation. This is an important literary tip of the 

hat by Asimov to statistical improbability. 

But soon, the here-to-fore quiescent Second 

Foundation comes to the rescue. This is a tiny, 

purely academic group, spawned by the original 

psychohistorians and situated by Seldon at the 

‘other end of the galaxy’ from the first 

Foundation. During the centuries that the first 

Foundation was expanding by means of science, 

technology, and trade, the Second Foundation 

was covertly developing mental powers and 

honing psychohistory into a formidable, almost 

exact, science. They defeat the Mule through 

mind-alteration, pick up the pieces of the first 

Foundation, and restore the Plan. Most 

impressive, they accomplish all of this while 

keeping their existence concealed. 

A sweet and humble farmer turns out to be at the 

head of the Second Foundation - a final chuckle 

from Asimov, likely aimed at all the grandiose 

dictators of the 20th century. 
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The Transistor 

Mastery of any quantity requires flow control, 

which is normally accomplished by a gate. This 

could be a fence gate for livestock, a sluice for 

water, a bank for money, etc.  Gating the flow of 

electricity was one of the major technological 

advances leading to the modern world. 

The early phase of the study of electromagnetism 

took place in the 1820s with the work of Ampère 

and Faraday (Steinle). They had to manually 

connect and disconnect components to control 

electricity in their elementary circuits. In 1843, 

Charles Wheatstone invented the rheostat, a 

manually controlled mechanical device for 

adjusting the flow of electricity ("rheo" being 

Greek for "to flow") (Lytle). 

Sir John Ambrose Fleming invented the thermionic 

electron valve, more commonly known as the 

vacuum tube, in 1904 (Okamura, 1994). This 

device allowed the electronic control of current 

flowing across a vacuum gap. For decades, it 

served as the basis of amplifying circuits in devices 

such as radios. It also served as a switching device 

in early electronic computers as did the electro-

mechanical relay. 

ENIAC3, the first full-scale, general-purpose 

electronic computer, was completed in 1946. It 

used relays for input/output, and 18,000 vacuum 

tubes for computation (Norton, 2005, p. 39). 

Vacuum tubes were however, large, power-

hungry, slow, unreliable, and expensive. The very 

idea of electrons leaping across a vacuum gap was 

ungainly. A solid state solution was needed. 

 

                                                           
3
 Electronic Numerical Integrator and Computer 

   built at the University of Pennsylvania 

In 1947, working at Bell Labs in New Jersey, J. 

Bardeen and W. Brattain constructed a working 

transistor (Brinkman, Haggan, & Troutman, 1997).  

A transistor is an electronic valve (gate) that 

controls the flow of current through a solid-state 

semiconductor (Coles, 1977, p. 5). "A transistor is 

just a piece of silicon whose conductivity can be 

turned off and on.” (Biermann, 1990, p. 204) 

Its name is a contraction of TRANSfer resISTOR.  

 

 

 

 

 

 

The world now had a small, low-power, fast, 

reliable, and inexpensive alternative to the 

vacuum tube. But the best was yet to come – 

miniaturization. 

For several years, designers experimented with 

different semiconductor types. A breakthrough 

came with transistors being built using silicon 

layers (planar construction). Early planar 

transistors sold for several dollars each around 

1959 (Moore, Keynote Speech, 1997). 

Using a photonic process, these planar transistors 

could be produced en masse on silicon wafers. 

Many transistors could be placed together on an 

‘integrated circuit’. Dramatic miniaturization took 

the electronics world by storm, and a dizzying 

reduction in transistor size and cost began.  
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Moore’s law, devised (and later modified) by 

microelectronics pioneer Gordon E. Moore 

(Cramming more components onto integrated 

circuits, 1965), states that the number of 

transistors that can be squeezed at low cost onto 

an integrated circuit will double every two years. 

It is a prediction that has held true to the present4. 

At times, it was even a bit too conservative. 

In 1968, the price of a transistor was one dollar 

(Intel, 2005). By 1972, it was about twelve cents. 

By 1980, it was a few hundredths of a cent. By 

1998, it was one millionth of a cent. It continued 

into small fractions of a millionth of a cent. Six 

years ago, it was estimated that the price of a 

transistor was that of one newspaper character 

(Intel, 2005). Today, transistors on massively 

integrated circuits are virtually free. The cost is in 

the packaging. 

Reduction in size/cost is not the only benefit. As 

integrated circuits get smaller, they also get faster. 

Electric charge moves through a wire at great 

speed, but not unlimited speed. The shorter the 

interconnections between transistors become, the 

faster will be the operations they perform. For a 

given speed of electric charge, and a given 

number of operations per second, there will be a 

limiting distance that an electric charge can travel. 

A rough estimate for the speed of electric charge 

inside an integrated circuit is 1/3000 the speed of 

light, or 100 kilometers per second (Biermann, 

1990, p. 221). Using this number, the limiting 

distance at 1 thousand operations per second is 

328 feet, at 1 million operations per second is 3.9 

inches, and at 1 billion operations per second is 

0.004 inches (p. 222). Size does indeed matter. 

                                                           
4
 Due to relentless innovation and the huge gulf 

between our scale and the quantum scale, a physical 
limit which we are now approaching 

It is difficult to overestimate the impact of this 

size/cost reduction over the last 50 years. Some of 

the fruits are: computers (super, mini, micro, 

portable, video game consoles5), communications 

(satellites, cellphones, microwave, digital TV, 

networks (including the Internet)), medical 

(diagnostics, treatment, chemical analysis and 

synthesis, genetic research), digital cameras, 

terrestrial navigation (GPS), extraterrestrial 

navigation (moon race, planetary exploration), 

manufacturing (assembly/robotics, automotive, 

aerospace), and new economic growth (Silicon 

Valley & other high-tech zones, the ‘Tiger’ 

economies). Truly, we now live in a digital age. 

 

The GPU 

In the mid-1990s, touched off by the burgeoning 

video game market, secondary pyrotechnics of 

transistor density began. The graphics processing 

unit (GPU) was a new dedicated subsystem on a 

PC card designed to enhance 3D graphic game 

display. Early cards had about 1 million transistors. 

By 2000, they had 25 million. By 2005, they had 

hundreds of millions (Lilly, 2009). 

 

                                                           
5
 “the latest Sony PlayStation would easily outpace the 

fastest supercomputer from the nineties” 
(Chazelle, 2006, p. 1 para. 5) 
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Each core in a GPU is a central processing unit 

(CPU) in its own right. These cores are often called 

‘shaders’ to reflect their main task in graphics 

manipulation, the GPU’s ostensive purpose. Each 

is capable of running its own program, or thread. 

These cores can also access shared memory, and 

are under the control of orchestrating logic that 

implements a unified parallel processor. 

Today, good GPUs have billions of transistors 

implementing and controlling hundreds of shaders 

(cores). These cards are often designed to work in 

tandem with several together in the same PC 

chassis. So, a high-end gaming PC might have 10 

billion transistors and a thousand cores in a single, 

1 kilowatt box. Compare this with the Foundation-

contemporary, apartment-sized, 150 kilowatt 

ENIAC and its 18,000 vacuum tubes. 

GPU software also evolved. Early proprietary 

application programming interfaces (APIs) gave 

way to the Open Graphics Library (OpenGL)  

(Lilly, 2009). Scientific research and engineering 

applications began to appear to harness some of 

this vast new number crunching power too. GPU-

assisted research projects in astronomy, biology, 

genetics, physics, materials/design, mathematics, 

and others have been launched. 

 

 

For many applications, computational costs are a 

receding concern. Almost-free transistors are 

currently moving several pre-existing techniques 

from the mostly academic realm into everyday 

practicality. We now look at two of these: 

Bayesian learning and functional programming. 
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Bayesian Learning 

Bayes6 introduced a method for combining a prior 

probability together with new knowledge (results 

data) to infer a revised probability. In Bayesian 

inference, subjectivity is made explicit and fixed in 

the past. Different sources may supply different 

prior probabilities (possibly subjective beliefs). 

This is in contrast with other statistical methods 

which may seem more objective, but where in fact 

the subjectivity is made implicit and on-going (e.g. 

assumptions about randomness, choices about 

sampling). 

The revised probability can then be fed back into 

the algorithm as the prior probability, together 

with new data. As this process iterates, learning 

takes place. 

Bayes’ theorem7: 

 ( | )  
 ( | ) ( )

 ( )
 

 

where: 

 

P(H)       is the prior probability of hypothesis (existing belief) 

P(D|H)   is the conditional probability (likelihood) of data 

                 given hypothesis 

P(D)       is the probability of data 

P(H|D)  is the posterior probability of hypothesis 

                 given data (revised belief) 

 

For two centuries, Bayesian theory was frowned 

upon by most statisticians, and was the source of 

a deep schism. The disagreement is essentially 

rooted in one’s definition of probability. 

For a ‘Frequentist’, an event’s probability is 

measured by the frequency distribution of trial 

                                                           
6
 Thomas Bayes 1702-1761. English Presbyterian 

minister, theologian, and mathematician 
(EB, Thomas Bayes, 2011) 
7
 The Modern representation is due to Laplace 

(McGrayne, 2011, pp. 49-50) 

outcomes. If an event has a probability of 0.5, it 

means that it is equally likely as not to occur in the 

limit (infinite trials). At the heart of this viewpoint 

is implicit randomness. Subjectivity about causes 

is excluded from the process. 

For a ‘Bayesian’, probability is a means of 

quantifying lack of knowledge (degrees of belief). 

New knowledge is used to revise beliefs. Effects 

inform knowledge about causes. It is an inductive 

process of learning from evidence or experience. 

Any subjectivity is made explicit, but past (prior), 

where it is more difficult to argue subjectivity. 

Far from excluding or avoiding causality, causal 

Bayesian networks explicitly include causes. “One 

of the most intriguing aspects of Bayesian 

networks is the role they play in formalizing 

causality.” (Darwiche, 2010, p. 88) 

The use of prior distributions in Bayesian methods 

is a double-edged sword. To a Frequentist, it is an 

unnecessary and subjective complication. To a 

Bayesian, however, it is an opportunity to include 

more information into an inference.  

Perhaps an exclusive distinction between the two 

is unnecessary. “The man in the street is happy to 

use probabilities in both these ways.” (MacKay, 

2003, p. 26) Laplace said of the latter: “essentially, 

the theory of probability is nothing but good 

common sense reduced to mathematics” (as 

quoted in (McGrayne, 2011, p. 50)) “Of course, it 

is futile to argue over which is the ‘correct’ 

definition of probability. The different definitions 

merely reflect different choices for the types of 

problems the theory can address” (Loredo, 1990, 

p. 85) 

A problem in applied mathematics is the ‘curse of 

dimensionality’. This refers to the idea that some 

problems (‘some’ becomes ‘most’ when studying 

examples from nature) have too many variables to 



geopense 

8 
 

be consistently handled. Worse, these variables 

often influence each other. Explicitly handling 

each and every eventuality could lead to a 

combinatorial explosion which would easily 

overwhelm the most massive computational 

power available now or even in the future. 

The brain is one such example from nature. The 

frequentist approach, which applies best to 

problems with a few un-entangled variables, is 

hopelessly out-gunned. The Bayesian approach 

may still have a chance: 

for multivariate cortical data, the Bayesian model provides for a 

more accurate representation by removing the effect of 

confounding correlations that get introduced due to canonical 

dependence between the data 

  

(Joshi, Joshi, Leahy, Shattuck, Dinov, & Toga, 2010, abstract) 

 

Another problem from nature is that of mapping 

RNA onto DNA. Translation from DNA to RNA 

involves keeping certain sequences (exons) and 

removing others (introns). This makes mapping a 

‘finished’ gene back onto DNA problematic. One 

approach is to use canonical Bayesian networks to 

study genetic linkage: 

To assess the likelihood of a linkage hypothesis, one uses a 

pedigree with some information about the genotype and 

phenotype of associated individuals. Such information can be 

systematically translated into a Bayesian network 

 

(Darwiche, 2010, p. 85) 

 

 

Sometimes, we need to evaluate probabilities 

with rare phenomena. Frequencies do not apply: 

The gamma ray astronomer does not want to know how an 

observation of a gamma-ray burst would compare with 

thousands of other observations of that burst; the burst is a 

unique event which can be observed only once, and the 

astronomer wants to know what confidence should be placed in 

conclusions drawn from the one data set that actually exists 

 

(Loredo, 1990, p. 83) 

 

 

Any model of real-world complexity is far beyond 

any engineer’s or artist’s ability to manually 

design. Such complexity must be created 

dynamically and/or learned from real-world data. 

Bayesian methods are an excellent means of 

implementing machine learning and subsequent 

machine reasoning and understanding that can 

generate new complexity based on the model. 

 

Why did Bayesian analysis languish for centuries? 

Dogmatism and the success of the Frequentist 

approach (at least until recently) are indeed part 

of the reason, but there is also a simpler part. 

Paradoxically, the world had to catch up to Bayes 

and Laplace. The computational power required 

for Bayesian methods to be successfully applied to 

real world problems has only recently existed: 

Computations took forever… 

The title of a meeting held in 1982, “Practical Bayesian 

Statistics”, was a laughable oxymoron. 

 

(McGrayne, 2011, p. 245)  
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Functional Programming 

In 1941, as Asimov ruminated over Foundation, 

Alonzo Church wrote "The Calculi of Lambda-

conversion".  His lambda calculus provided a 

conceptual basis for the discipline of functional 

programming (Barendregt, 1997). FP, as opposed 

to the more common imperative programming 

approach (e.g. C), is well-suited to concurrent and 

parallel architectures. There are now many FP 

languages and tools, and FP has also been 

included at least to some degree in many other 

popular languages and tools. 

We will take a closer look at one functional 

programming language, Haskell, in order to 

highlight some of the features of FP that make this 

a promising approach for modern scientific 

modeling. Haskell is certainly not the only, or 

necessarily the best, choice8. However, it is by 

default: purely functional, ‘lazy’, compiled, and 

statically (although automatically) typed. It is 

open-source, has been in active development for 

over twenty years, and has built-in support for 

parallel systems (Haskell.org). 

In 1958, John McCarthy, inspired by the lambda 

calculus, created Lisp, the main language of 

artificial intelligence (AI) for decades to come. In 

the early 1970s, Robin Milner created the 

functional programming language ML. Haskell 1.0 

appeared in 1990. Rapid increase in computer 

power allowed trading off some raw performance 

in favour of programmer productivity. Haskell 

then successfully made the move beyond 

academia and into the open source and 

commercial domains (O'Sullivan, Stewart, & 

Goerzen, 2008) (A brief sketch of Haskell's history 

section). 

                                                           
8
 For example, Clojure springs to mind, but the 

requirement for a Java VM might be problematic. 

Haskell is ‘purely functional’. This means that 

Haskell functions are without side effects. Code 

execution does not need to be sequential because 

variable data are not passed along a chain as on 

an assembly line. The classic statement X = X + 1 

has no place in Haskell because the data that a 

function works with are never modified. Access to 

the external world is not handled by ‘pure’ code. 

Automated testing of purely functional code is 

easier because it is ‘stateless’ (immutable data) 

and isolated from the outside world. 

Haskell is very high level (i.e. elegant, powerful). 

Its syntax is less like a series of explicit steps and 

more like mathematical expressions. One specifies 

‘what’ is needed, not ‘how’ to get it (declarative as 

opposed to imperative). Since it is stateless, FP 

implements repetition via recursion not loops 

(Goldberg, 1996). 

Haskell is ‘lazy’. This means that functions are not 

executed unless and until they are required, 

improving brevity and efficiency, sometimes 

immensely. The value of blinding execution speed 

is lessened when a language is savvy enough to 

avoid wasted effort. 

Haskell is ‘rigorous’. By design, errors are detected 

at compile time, not runtime. Actually, a 

program’s correctness is almost a prerequisite to 

it running at all.   

Since it is purely functional, Haskell code runs well 

on parallel architectures. Since it is compiled, 

statically typed, and ‘lazy’, Haskell code is fast. 

Since it is elegant, rigorous, and highly testable, 

Haskell code is maintainable. This combination 

makes Haskell suitable for modeling huge systems 

such as the psychohistory of humanity. 
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The Algorithm 

Formal logic has been a shining jewel for great 

thinkers down through the ages. In the West, one 

can list Aristotle, Hobbes, Leibniz, Boole, Gödel, 

and many others before even venturing into the 

rich philosophical histories of other cultures. 

For millennia, mathematics progressed based on 

symbolic representations and formal logic. As a 

result, our understanding of the universe also 

progressed. Perfect shapes and exact formulae 

inspired mathematicians, astronomers, physicists, 

engineers, artists, and philosophers to embrace 

the world of axioms, conjectures, proofs, and 

truth exemplified by  this ‘Queen of Sciences’. 

In the last century or so, as in so much of science, 

storm clouds have begun to appear. We have 

been increasingly choked by complexity and data. 

Now faced with multivariate, nonlinear, near-

frantic complexity, fed to us by instruments that 

extend our reach far out in all directions of time, 

space, and life, our beloved symbolic notions have 

begun to fall short. 

As it turns out, there is another way; one that is 

unfettered by the requirement of fitting within 

the human head. 

The Algorithm's coming-of-age as the new language of science 

promises to be the most disruptive scientific development since 

quantum mechanics 

 

(Chazelle, 2006) 

 

 

 

The younger generation seemed to think that computers and 

their algorithms could replace mathematics entirely. 

 

(McGrayne, 2011, p. 245) 

 

 

 

 

Alan Turing wrote a paper in 1936 which 

answered a question in mathematics (negatively) 

by replacing calculus with a ‘universal computer’ 

(Steer, Birch, & Impney, 2008, p. 259). Here was a 

theoretical outline of the modern computer. 

The universal computer was thought objectified. 

Any possible task of computation could be done 

by this theoretical contrivance. Over the next 

decade, theory would become practice, and the 

ENIAC appeared in 1946. 

Computers got faster, smaller, and cheaper, but 

the basic principles of operation have remained 

unchanged since Turing9. A central processing unit 

(CPU) reads programs and data10, processes them 

(‘control’), and produces output. 

A formula is a predicate applied to one or more 

arguments, or a combination of simpler formulae 

(Sharples, Hutchinson, Torrance, & Young, 1989, 

p. 361). "An algorithm is a method, procedure, or 

recipe for doing a job." (Biermann, 1990, p. 39) 

The algorithm’s procedure is applied by the 

controlling logic (CPU) as it reads input and 

(presumably) generates output. A formula relates 

symbols, an algorithm manipulates data. Overly 

simplified, a formula articulates knowledge, while 

an algorithm generates knowledge (or at least 

information). 

Algorithms are now in use everywhere, perhaps 

even in your digital camera. Some of the earliest 

and most successful algorithms were invented for 

image processing. Edge and region detection were 

implemented years ago (Sharples, Hutchinson, 

Torrance, & Young, 1989, p. 266). 

                                                           
9
 Excepting theoretical ideas like quantum computing 

10
 The similarity between programs and data is known 

as ‘duality’ (Chazelle, 2006) 
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One of the mathematical forms that has come to 

the fore because of ever increasing computational 

power is the fractal. The best-known fractal is the 

Mandelbrot set, which is generated with the 

algorithm: 

       

where: 

     Z is a complex number 

     c is a complex constant (test point) 

 

After sufficient iterations, a planar image emerges 

displaying self-similarity at different scales and an 

“infinite regress of detail” (Dewdney, 2002). The 

Mandelbrot set illustrates that a simple algorithm 

using basic iteration or recursion can produce 

deep complexity. Fractals offer a glimpse into the 

construction mechanisms of nature. 

Another form is the cellular automaton, which is 

again the basis of many simulations of systems in 

the real world. The best-known example is 

Conway’s Game of Life (EB, cellular automata 

(CA), 2011). 

Another powerful method, especially useful for 

research in areas where little is known about 

causation, is Monte Carlo analysis. In this method, 

random sampling is used instead of a formula. The 

goal is to simulate a complex system and to have 

properties of that simulation converge to stable 

values. In normal cases, Monte Carlo analysis 

helps to test theory. In the best case scenario, 

actual discovery of underlying causation is a goal 

(to guide theory). 

A very simple example of Monte Carlo analysis is 

the estimation of the value of π. The following 

diagram shows the geometric and algebraic 

representations of the ratio of areas of a circle 

(radius=r) which fits exactly inside a square 

(side=2r). Thus, knowing this ratio will give us a 

direct means of calculating π. 

 

 

We repeatedly generate random points that lie 

within the square. Some of these points will also 

lie within the circle. By counting the number of 

‘hits’ in both, we can estimate the ratio of areas of 

the circle to the square. Generally, the more 

random points (samples) are generated, the more 

accurate the estimate will be. It can take a million 

samples for the value of π to converge to several 

decimal places. However, this task can be 

accomplished by a modern parallel processor in a 

fraction of a second. Computational costs are a 

receding concern. 

A more sophisticated method is Bayesian Monte 

Carlo (BMC) which incorporates prior knowledge. 

(Rasmussen & Ghahramani, 2002, abstract) 

Algorithms offer informal and highly interactive 

access to knowledge manipulation and testing. 

They encourage inductive thought as opposed to, 

and hopefully in addition to, more traditional, 

logical deductive reasoning. They have become a 

powerful tool for scientific thought, research, and 

even discovery. 

“One can’t proceed from the informal to the 

formal by formal means.” 11 

  

                                                           
11

 Computer scientist Alan J. Perlis 
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The Cloud 

Classical computing involved the local assembly 

and maintenance of computing resources and 

expertise. It was the only realistic approach until 

about a decade ago. The Internet, coalescence of 

standards (e.g. security, formats, and workflows), 

and the maturing of specialized services has led to 

a modern alternative. 

Cloud computing is the accessing of services 

delivered over the Internet. Computing is 

abstracted to a virtual space called the 'Cloud'. 

This approach enables small organizations (e.g. 

many research institutions) or even individuals to 

obtain access to significant processing power. 

Additionally, they can benefit from expertise and 

experience that would be too costly, difficult, and 

time-consuming for them to develop themselves. 

This includes development, maintenance, and 

updating of software and equipment12. 

Cloud computing is infinitely scalable. Resources 

can be sourced from a global pool. These 

resources can be quickly made available for 

special events, projects, or training, and 

subsequently scaled back again. 

As newer hardware, software, and standards 

arise, they can be capitalized on immediately with 

little or no buy-in cost. Forecasting the future of 

technology is no longer a major concern. 

This decoupling of research administration from 

technology is helpful for two reasons. 

The first is the simplification and clarification that 

ensues. When computation is an abstract layer, 

focus can return to research. Power transmission 

technology has similarly geographically decoupled 

electrical power generation from its use.  
                                                           
12

 An example is the Xen virtualization platform 
developed in the UK. (Schubert, 2010, p. 37) 

The second reason is the fact that technology, 

particularly commercial technology, has always 

been rife with irrational and stubborn loyalties. 

Although the same could be said for research at 

times, science has a self-correction mechanism 

(e.g. ending the dogmatic dismissal of Bayesian 

methods) that is lacking in the commercial world 

where the rationality of purchases is often 

immaterial. 

 

Distributed Computing 

A special case of abstracted computing, where 

processing is spread widely across geographical 

boundaries is that of distributed computing (DC). 

Just as multiple cores in a parallel processor 

shorten the time it takes to accomplish a task 

otherwise handled by a single CPU, multiple sites 

of computation can leverage work by 

incorporating the processing power of other 

machines. In most cases, the wider participation in 

and contributions to projects is volunteered, often 

by the general public. 

 

Crowd Sourcing 

In crowd sourcing, it is not distributed computers 

that are harnessed, but people, or more 

specifically, their ideas and opinions. If an open 

call is put out for participation in a project, it is 

likely that mainly those with an interest or 

expertise to offer will reply, thus improving upon a 

purely random sample. 

Multiple distributed human minds can be applied 

to a common project analogously to distributed 

computers. Social networks have themselves 

become a subject of Bayesian learning research. 

(Acemoglu, Dahleh, Lobel, & Ozdaglar, 2010)  
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Brain and Mind 

Cause: Life 

Darwin presented us with a scientific theory of 

life: evolution13. Evolution largely explains the 

bewildering diversity and complexity of life. As an 

equation with operators, it might be written as: 

 evolution = time(natural_selection(variation)) 

where ‘variation’ is used as a simplistic 

amalgamation of mutation, genetic drift, 

geographic isolation, symbiotic combination,… 

“Natural selection is an improbability pump: a 

process that generates the statistically 

improbable.” (Dawkins, 2009, p. 416) 

Life began almost 4 billion years ago, after the 

new-born earth had stabilized. "In effect, life on 

earth began almost as soon as it could have" 

(Hunter, 1993, p. 8). Evolution went straight to 

work on simple life forms. 

About 1½ billion years ago, cells with a nucleus 

appeared, and this more complex form of life 

probably formed from symbiotic collections of 

simpler, prokaryotic life as described by the 

Endosymbiotic theory of Lynn Margulis (as cited in 

Hunter, 1993, p. 8). Then came intra-form cellular 

specialization (differentiation) (e.g. roots and 

leaves) (p. 10). 

Eventually, immune systems developed, and the 

power of evolution began operations on the 

micro-time scale, in a biological analog of the 

transistor story. 

Darwin never knew about DNA. Like digital 

computers, genetics is based on a digital code. 

                                                           
13

 Later work by Fisher, Haldane, and Wright led to a 
more rigorous description of natural selection, called 
Neo-Darwinism (Steer, Birch, & Impney, 2008, p. 128) 

"The machine code of the genes is uncannily 

computerlike." (Dawkins, 1995, p. 17) 

The translation of this code into physical form is 

called gene expression. The intricate process of 

gene expression is controlled by "an elaborate 

dance with many participants" (Hunter, 1993, p. 

12). This process is fundamental to the study of 

molecular biology14. 

Simple life is not 'primitive'. It is evolving. Human 

life is not 'ultimate'. It is evolving. Complex life 

evolved from earlier simpler forms, but not from 

modern simpler forms. All forms of life, from 

simple to complex, continue to evolve. Evolution 

is not a single sequential process, but an entire 

world of sequential processes, sometimes 

overlapping and even interacting, and all 

happening in parallel. The temporal mapping of 

this grand parallel process is a truly immense 

hierarchical structure - the tree of life. 

Long ago, along one branch (or several) of that 

tree, brains evolved. Eventually, along a 

subsequent branch, primate brains evolved. Then, 

along a subsequent branch to that, the modern 

human brain evolved. 

 

Effect: Brain 

Perhaps the most amazing thing about the brain is 

its size. Confucius, Aristotle, da Vinci, Laplace, and 

Einstein each perceived the world, and changed it, 

using this small lump of flesh. 25 years ago, 

Asimov the biochemist described it conservatively: 

In its three pounds are packed ten billion nerve cells and nearly 

one hundred billion smaller supporting cells. 

 

(Asimov, Foreword, 1986)  

                                                           
14

 DNA -> RNA -> protein (Steer, Birch, & Impney, 2008, 
p. 274) 



geopense 

14 
 

The brain is like the Endosymbiotic theory writ 

large. As with all other organs, the brain is 

composed of cells, but these cells form a vastly 

interconnected, self-controlled, single entity with 

complexity and behaviour qualitatively beyond its 

constituent parts. 

Most of the higher human brain functions are 

located in the Neo Cortex, the crinkled wrapping 

of the brain, roughly the size (when unfolded) of a 

dinner napkin, containing about 30 billion neurons 

(Hawkins, 2010). 

The brain looks Bayesian: “In this debate, there is 

no more powerful argument for Bayes than its 

recognition of the brain’s inner structures and 

prior expectations.” (Stuart Geman as quoted in 

(McGrayne, 2011, p. 286)) 

In modern theory, brain function is hierarchical. 

That is, inputs from the senses travel up a 

pyramid-like hierarchy of neural levels as they 

self-reference and coalesce into higher and higher 

‘thoughts’. The locomotion of this travel is of 

course the firing of neurons. Near the top of the 

hierarchy, thoughts enter into consciousness. 

Jeff Hawkins describes ‘Hierarchical Temporal 

Memory’ (Hawkins, 2010) and Michael Shermer 

describes a ‘binding’ process (Shermer, 2011, pp. 

115-117). 

It is tempting to assume that ‘hierarchy’ implies 

design. This is false. Natural hierarchies can arise 

due to self-organization, evolution, or inductive 

learning. Hierarchies are not always deduced. 

It is also tempting to assume that 100% of 

intelligence is brain-based. This is unlikely. 

Neurons do exist outside of the brain, and 

intelligence might well exist outside of neurons. 

Brain's Effect: ‘Mind’ 

Dualism, the belief that the brain is physical and 

the mind is not, is as old as mankind. “the French 

philosopher René Descartes (1596-1650) believed 

that humans were guided by an immaterial mind” 

(Sharples, Hutchinson, Torrance, & Young, 1989, 

p. 9). Descartes15 lived three centuries before 

modern neurology so it is understandable that he 

believed the brain and the mind to be separate. 

“They are not. They are one and the same.” 

(Shermer, 2011, p. 153) 

Many people believe that science is limited, and 

that mind and imagination are ultimately larger. 

Counter-intuitively, the opposite is true. 

We once looked up at the night sky and imagined 

mythical creatures. We now know that we are 

seeing photons emitted many years ago by 

incredibly distant, raging nuclear fusion infernos. 

Big telescopes reveal soul-drenching beauty and 

robot probes visit other worlds. 

We used to imagine that disease had mysterious 

dominion over us and that occasional recovery 

was miraculous. We now have medical knowledge 

that routinely saves children and extends lives. 

Now we are faced with the possibility that the 

brain, culture, and humanity itself are all valid 

domains of scientific research, and may even be 

computable. Predictably, we recoil at first. The 

‘masters of the Earth’ now seem like little children 

wandering into a great library. But perhaps there 

is grandeur in this view… 

The world is not only stranger than we imagine,  

it is stranger than we can imagine.16  

                                                           
15

 “I think, therefore I am.” 
16

 Derived from original quote by J.B.S Haldane 
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The Model 

The above digression into neurology did have a 

purpose. We are not considering a normal 

computer model. This is not a model of particles 

and force fields, matter and energy, economic 

interplay, or even complex biochemistry. It is 

rather, a model of myriad perceptions and beliefs 

– a model of models. 

 

A quick overview of Asimov’s psychohistory 

Psychohistory began with a rather simplistic view: 

Implicit in all these definitions is the assumption that the human 
conglomerate being dealt with is sufficiently large for valid 
statistical treatment. The necessary size of such a conglomerate 
may be determined by Seldon's First Theorem which ... A 
further necessary assumption is that the human conglomerate 
be itself unaware of psychohistoric analysis in order that its 
reactions be truly random… 
 
(Asimov, Foundation, ch. 4 para. 2) 
 
 

So Seldon's original view was of people being 

almost like molecules in a kinetic theory of gases.  

However, subsequent books depended on 

psychohistory taking centuries of epic 

mathematical effort to substantially develop. As 

the saga continued, psychohistory became 

steadily less simplistic and static, and thus more 

interesting: 

So he [Seldon] created his Foundations according to the laws of 

psychohistory, but who knew better than he that even those 

laws were relative. He never created a finished product. 

Finished products are for decadent minds. His was an evolving 

mechanism… 

 

(Asimov, Second Foundation, ch. 6 para. 20) 

 

 

The third sentence of that passage could well 

serve as a one-line summary of Asimov's 

philosophy in Foundation. 

Much later, in the final book of the larger story, 

Asimov even had one protagonist say: 

the whole thing depends on dealing with people who are both 

numerous and unaware. Doesn't that seem to you a 

quicksandish foundation on which to build an enormous 

mathematical structure? 

 

(Asimov, Foundation and Earth, ch. 31 para. 47) 

 

 

A quick overview of computation in 2011 

Traditionally, computer models have been 

implemented on sequential computers, using a 

single central processing unit (CPU). The easiest 

way of augmenting these models is by extending 

into parallel hardware architectures like the GPU. 

Almost-free transistors and cloud computing make 

this extension relatively easy and inexpensive. 

Similarly, parallel software architectures like 

functional programming make sense. This is now a 

mature technology, and mature maintenance 

features enable its use in very large projects. 

Today’s software designers are comfortable with a 

less formal, more empirical, algorithmic world. 

Now that Bayesian methods are more widely 

accepted and understood, their application should 

provide the scalability required to conduct 

quantitative research into nature. 

 

Consciousness is learned 

What is the essential trait that makes us human? 

It certainly is not our senses - any child can quickly 

think of animals that are more acute in one or 

more senses. Likewise for our physical abilities. 

Other creatures have larger brains (e.g. elephants, 

some whales). Neanderthals may even have had 

slightly bigger brains, and they are extinct (as a 

separate species at least). 
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Yet in a momentary flash, a vanishingly tiny 

fraction of evolutionary time, modern humans 

have come to dominate the planet completely, 

have taken the first few steps into space, and have 

even begun to manipulate life at the genetic level. 

How? 

This a crucial question if we are to model 

psychohistory. Any successful model must 

understand and incorporate the behaviour of its 

elements. In a psychohistory model, behaviour on 

every scale depends on the answer to this 

question, from the individual, to inter-personal 

relationships, to extended families and circles of 

friends, to cities, to states, to cultures, to all of 

humanity. 

Of course, the answer is:  language. 

"Some philosophers believe that it [consciousness] 

is crucially bound up with language, which seems 

to have been achieved once only, by the bipedal 

ape species Homo sapiens." (Dawkins, River Out of 

Eden, 1995, p. 157) 

The study of language is linguistics. Our model 

must possess considerable expertise in linguistics. 

In fact, it must be able to acquire/develop such 

expertise. Since at least the 1950s, the field of 

computational linguistics has been very active:  

In September of 1952, I presented an oral report… 

As the years have passed, the general awareness that the 

linguistic problems… 

 

(from an early paper on machine linguistics in a 

chemistry application) (Garfield, 1961, p. 458) 

 

 

A model that learns 

Psychohistory is not finished and static, it adapts 

and evolves. Our model must be able to 'learn'. 

Early AI focused on symbolic reasoning (math, 

chess). But that approach hit a brick wall when 

later research turned to the more everyday 

problems of vision and common sense. 

Intelligence is a function not of processing speed, 

but of knowledge capacity and representation. 

As it turns out, one almost has to understand the 

world before one can understand the world. A 

person is capable of common sense because they 

carry around a tiny model of reality in their head. 

This model is trained in a ‘bootstrapping’ manner. 

When we are infants, we have a very sparse 

model and can interpret only some simple inputs 

(a few faces and a few physical mechanisms). 

Several months spent training that model (mainly 

at the bottom end of the neural hierarchy) gives 

us a model capable of taking the next incremental 

steps. During a lifetime of learning, the model 

builds on what it already knows to assimilate 

more information and more complexity. 

Obviously, there is no objective ‘trainer’. A 

learning mind is a model that self-trains. 

A psychohistory model must have this same 

ability. But instead of one mind, it must train 

billions17, while it is simultaneously learning the 

patterns of causation for humanity’s collective 

behaviour. This model would be ‘the mother of all 

neural networks’.  

 

A few tips & tricks 

The only representational architecture that could 

work for such a huge knowledge base of such 

enormous complexity is hierarchical. Recursive 

reuse of stored knowledge and self-reference 

must be automatic and ubiquitous. 

                                                           
17

 Using knowledge of geography, history, basic human 
cognition, psychology, language, culture, …  
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The model should embrace paradox and irony. 

In cybernetics terms, it should be able to digest a 

double-bind dilemma. 

The model should leverage modern techniques 

with a healthy respect for the past: 

Current strategies for designing computers that could perform 

at biological levels exploit such ancient principles as reusable 

parts, hierarchical structures, variations on themes, and 

regulatory systems. 

 

(McGrayne, 2011, p. 286) 

 

 

The designers should learn from others who have 

taken the first steps into Bayesian modeling of 

mass social behaviour. 

The social network consists of the network topology and the 

signal structure. Each individual then chooses one of two 

possible actions depending on his posterior beliefs given his 

signal and the realized neighborhood. 

 

(Acemoglu, Dahleh, Lobel, & Ozdaglar, 2010, p. 16) 

 

The overall problem may be somewhat reducible. 

One avenue might be indicated by ‘mirror 

neurons’. These are neurons that fire when 

behaviour is observed in another.  They do not 

only participate in patterns - they reflect them. 

This might lead to a way to substitute reference 

for instantiation, an optimization practice familiar 

to computer programmers. 

there are neurons specialized for discriminating between 

different intentions … this implicates mirror neurons in both 

predicting others’ actions and inferring their intentions 

 

(Shermer, 2011, p. 132) 

 

 

Bayesian networks have other major benefits. 

They can use and reuse many existing generalized 

algorithms (both for knowledge capture and 

optimization). They can efficiently represent huge 

knowledge bases, in part due to their ability to 

localize causality and thus un-entangle variables. 

every variable in the structure is assumed to become 

independent of its non-descendants once its parents are known 

 

(Darwiche, 2010, p. 82) 

 

 

Lastly, there are times when traditional smoothing 

and approximation still can be helpful to simplify 

Bayesian representations. An example might be to 

strategically apply a Gaussian process, with one 

caveat being the computational cost of inverting 

large matrices (MacKay, 2003, p. 547). However, 

computational costs are a receding concern. 

 

 

 

 

 

Conclusion 

Over 60 years ago, Isaac Asimov wrote about 

psychohistory as a calculus for the course of 

humanity. 

In the near future, it may be possible to accurately 

model a form of psychohistory.  
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